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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAT, MEMORANDUM X-68

SOME EXPERIMENTAT, HEATING DATA ON A 5.0-INCH-DIAMETER
FLAT FACE WITH HEMISPHERICAL DEPRESSIONS™

By Thomas W. Tyner
SUMMARY

A flat-faced cone, 5.0 inches in diameter with four hemispherical
depressions, was flight tested to obtain heat-transfer data. The data
were reduced at Mach numbers of 5.0 and 6.3 and Reynolds numbers per

foot of 25.54 x lO6 and 29.93 x 106, respectively. The results indicate
an increase in heating rate up to 93 percent at the depressions.

INTRODUCTION

The National Aeronautics and Space Administration is interested in
blunt-nose shapes for reentry applications, and recent research has
shown that the flat face 1s a promising configuration because of its
lower stagnation-point heat transfer and lower total heat input during
laminar-flow conditions. Possible use of a flat face as the nose on
reentry vehicles raises the question of the possible effects of damage
from countermeasures or meteoroids. Therefore, the Langley Pilotless
Aircraft Research Division has conducted investigations to determine
the local heating about simulated damage points in the form of hemi-
spherical depressions. The data presented in this paper are the result
of a flight test made at the NASA Wallops Station by using a propulsion
system consisting of two stages of solid-propellant rocket motors; the
first stage was a Nike booster (M5 JATO) and the sustainer was a Recruit

o
motor (JATO XM19 E1). The test configuration was ‘a lh% half-angle

truncated cone with a 5.0-inch-diameter flat face. The flat face was
indented with four hemispherical depressions of various sizes placed
at varlous stations. The data are presented primarily for Mach numbers

of 5.0 and 6.3 and Reynolds numbers per foot of 25.54 X 100 and
29.93 x 106, respectively.

*
Title, Unclassified.




SYMBOLS
°p specific heat, Btu/(1b)(°R)
M Mach number
a heating rate, Btu/(sq ft)(sec)
r radius, ft
T temperature, °R
t time, sec
X radial distance from stagnation point, ft
o density, 1b/cu ft
T thickness, ft
Subscripts:
t stagnation conditions
W conditions at wall
Abbreviations:
TC. thermocouple
EQ. SP. equally spaced (see fig. 6)

MODEL AND TEST

Model

Figure 1 shows a dimensioned sketch of the model and booster system,
and figure 2 shows the general configuration of the model on the launcher.
The propulsion system consisted of a Nike booster, stabilized by four

2% -square-foot fins, and a Recruit sustainer, stabilized by a 10° half-

angle flare.
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Figures 3, 4, and 5 show detailed views of the nose. The telemeter
and batteries are contained in a cone-cylinder section just ahead of the
Recruit motor.

The flat face was made from 0.050-inch-thick Inconel and was finished
to a surface roughness of 6 microinches as measured by a profilometer.
Actual skin-thickness measurements made at each thermocouple location
are presented in table I. The nose was supported in compression by a
ribbed, mild steel form coated with aluminum oxide for insulation pur-
poses. The configuration was a truncated cone 2.258 inches long with a
semivertex angle of 14.5°, a base diameter of 6.424 inches, and a tip
diameter of 5.0 inches.

The flat face of the model was impressed with four hemispherical
depressions. Three of the depressions had a radius of 0.25 inch and
were placed at stations x/r of 0.333, 0.667, and 1.00. The fourth
depression, with a radius of 0.50 inch, was placed at a station x/r
of 0.677. Detalls of this model are shown in figure 6.

Instrumentation

The model was equipped with four channels of telemetry, two of
which were devoted to thermocouples and the other two were devoted to
longitudinal accelerometers. The flat face of the model was instru-
mented with 18 thermocouples, 6 in a ray extending out from the center
on one channel and 12 in the various depressions on the second channel.
All thermocouples were No. 30 chromel-alumel wire and were welded to the
inside surface of the flat face. The entire thermocouple arrangement is
shown in figure 6.

This model was also instrumented with two longltudinal accelometers
to supply velocity and drag data. However, satisfactory velocity data
were obtained by a CW Doppler radar set, and no drag data were received
because of telemeter failure.

Just prior to launching the flight model, atmospheric conditions
were measured by means of radiosondes that were tracked by a Rawin set
AN/GMD-1A. Model velocities were obtained with a CW Doppler radar set,
and the space-time coordinates were plotted by an NASA modified
SCR-584 radar set.

Flight Test

The model was launched at an elevation angle of 60°. The Nike motor
boosted the model to a Mach number of 2.71 at 3.5 seconds, and the Recruit
motor accelerated it to a Mach number of 7 at 5.8 seconds. Figure 7 shows




the time histories of Mach number, altitude, and Reynolds number for
this model.

Temperature data were received from zero time to 6.0 seconds, at
which time the telemeters failed. It should be noted that at the time
of the telemeter failure, the model skin temperature was nearly at the
melting point of Inconel. It is possible that this in conjunction with
high airloads caused the telemeter failure.

DATA REDUCTION

The varlation of the measured skin temperatures with time is pre-
sented in figure 8. These curves are arranged in groups for comparison
of the temperatures on the flat face or in the depressions. The tempera-

ture scales of flgure 8 are staggered to allow vertical separation of
the curves.

The heating rates presented in figure 9 were calculated for each
thermocouple location by using the formula

' ar
9= (CPpT)w a_EE

The value dTy/dt was determined from the temperature history of the

model. This value was then plotted and a smooth curve was faired through
the points. Radiation and conduction effects were estimated and found
to be negligible for the times considered.

No pressure measurements were made on this model; however, the
pressure distribution and the velocity for a flat face as given in ref-
erence 1 were assumed to hold here. This was felt to be a reasonable
assumption since these parameters are essentially invariant with Mach
number above a Mach number of approximately 2.

A time history of the heating rate reduced from the temperature
time histories and presented for the time interval of 4 seconds to
telemeter failure is given for each thermocouple location in figure 9.
Theoretical values for the laminar heating ratioc q/qt were calculated

from the theory given in reference 2 by using the nondimensional tem-
perature parameter as given in reference 3.

The theoretical heating rate for turbulent flow was calculated from
reference 4 by using the theory of reference 5. For these calculations,
the adiabatic-wall temperature was assumed to be constant over the flat
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face. Actually it varied less than 1 percent from the stagnation point
to the station of thermocouple 6.

RESULTS AND DISCUSSION

Figure 10 presents values of q/qt at Mach numbers of 5 and 6.3

for each thermocouple location along with the theoretical values for
laminar and turbulent flow along a smooth flat face. The heating rates
calculated from the ray of thermocouples along the flat face fall on or
below the theoretical laminar-flow curve. Thus, it is probable that
in the absence of the depressions, flow over the entire face would have
been laminar. The heating rates in the hemispherical depressions indi-
cate transitional and turbulent flow.

_ The experimental results show that, although the heating rates in
the depressilons nearest the stagnation point are lower than those in
the pits near the edge of the model, the flow is more nearly turbulent
about the inboard pit than about the outboard pit. This can be seen
from figure 10 by comparing the data points with the turbulent-theory
curve at x/r stations less than 0.5 and by comparing data points with
the theory curve at x/r stations greater than 0.5.

The behavior of the heating rates in the depressions on this model
contrasts greatly with the behavior in pits at the stagnation point.
Reference 6 shows the heat-transfer coefficlent at the bottom of a
hemispherical pit at the stagnetion point of a cone-hemisphere nose to
be one-tenth the stagnation value of a smooth hemispherical nose at a

‘Mach number of 8. Reference 7 shows that the heat-transfer coefficient

at the bottom of a hemispherically concave nose is about 0.08 of the
stagnation value of a hemispherically convex nose of the same diameter.
Some unpublished data obtained at the Langley Research Center from the
ceramic-heated jet (pilot model) on flat-face models with cylindrical
pits at the stagnation points also show that depressions at the stagna-
tion point reduce the heating rate.

CONCLUSIONS
From the experimental data presented, the following conclusions

may be drawn:

1. Flow over the face of the model was basically laminar.
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2. Depressions on the nose tripped the boundary layer and causéd

higher local heating corresponding to either transitional or turbulent
flow.

3. The measured heating rates indicated that the flow about the
inboard depression was more nearly turbulent than that about the out-
board depression.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., June 29, 1959.
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TABLE I

SKIN THICKNESS AT THERMOCOUPLE LOCATIONS

Skin Skin
Thermocouple | x/r thi;i?ess, Thermocouple | x/r thi;ﬁ?ess,
1 0 0.049 10 0.667 0.055
2 1667 .051 11 .808 .055
3 333 .051 12 .682 .055
L .500 .050 13 595 .059
5 667 .051 14 667 057
6 .833 .050 15 137 .059
7 .920 .059 16 .263 .059
8 .965 057 17 333 -057
9 .526 .055 18 oh .059
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Figure 2.- Model on launcher.
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Figure 8.- Continued.
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Figure 8.- Continued.
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